skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sim, Jin-ah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Objective To determine if natural language processing (NLP) and machine learning (ML) techniques accurately identify interview-based psychological stress and meaning/purpose data in child/adolescent cancer survivors. Materials and Methods Interviews were conducted with 51 survivors (aged 8-17.9 years; ≥5-years post-therapy) from St Jude Children’s Research Hospital. Two content experts coded 244 and 513 semantic units, focusing on attributes of psychological stress (anger, controllability/manageability, fear/anxiety) and attributes of meaning/purpose (goal, optimism, purpose). Content experts extracted specific attributes from the interviews, which were designated as the gold standard. Two NLP/ML methods, Word2Vec with Extreme Gradient Boosting (XGBoost), and Bidirectional Encoder Representations from Transformers Large (BERTLarge), were validated using accuracy, areas under the receiver operating characteristic curves (AUROCC), and under the precision-recall curves (AUPRC). Results BERTLarge demonstrated higher accuracy, AUROCC, and AUPRC in identifying all attributes of psychological stress and meaning/purpose versus Word2Vec/XGBoost. BERTLarge significantly outperformed Word2Vec/XGBoost in characterizing all attributes (P <.05) except for the purpose attribute of meaning/purpose. Discussion These findings suggest that AI tools can help healthcare providers efficiently assess emotional well-being of childhood cancer survivors, supporting future clinical interventions. Conclusions NLP/ML effectively identifies interview-based data for child/adolescent cancer survivors. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026